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Computational theories of structure-from-motion and stereo vision only specify the
computation of three-dimensional surface information at special points in the image.
Yet the visual perception is clearly of complete surfaces. To account for this a compu-
tational theory of the interpolation of surfaces from visual information is presented.

The problem is constrained by the fact that the surface must agree with the informa-
tion from stereo or motion correspondence, and not vary radically between these points.
Using the image irradiance equation, an explicit form of this surface consistency constraint
can be derived.

To determine which of two possible surfaces is more consistent with the surface
consistency constraint, one must be able to compare the two surfaces. To do this, a
functional from the space of possible functions to the real numbers is required. In this
way, the surface most consistent with the visual information will be that which mini-
mizes the functional. To ensure that the functional has a unique minimal surface,
conditions on the form of the functional are derived. In particular, if the functional is
a complete semi-norm that satisfies the parallelogram law, or the space of functions is
a semi-Hilbert space and the functional is a semi-inner product, then there is a unique
(to within possibly an element of the null space of the functional) surface that is most
consistent with the visual information.

It can be shown, based on the above conditions plus a condition of rotational
symmetry, that there is a vector space of possible functionals that measure surface
consistency, this vector space being spanned by the functional of quadratic variation
and the functional of square Laplacian. Arguments based on the null spaces of the
respective functionals are used to justify the choice of the quadratic variation as the
optimal functional.

Possible refinements to the theory, concerning the role of discontinuities in depth
and the effects of applying the interpolation process to scenes containing more than one
object, are discussed.

1. INTRODUCTION

Although our world has three spatial dimensions, the projection of light rays onto the retina
presents our visual system with an image of the world that is inherently two-dimensional. We
must use such images to physically interact with this three-dimensional world, even in situations
new to us, or with objects unknown to us. That we do so easily implies that one of the functions
of the human visual system is to reconstruct a three-dimensional representation of the world
from its two-dimensional projection onto our eyes.

Methods that could be used to effect this three-dimensional reconstruction include stereo
vision (Wheatstone 1838; Helmholtz 1925; Julesz 1971) and structure-from-motion (Miles 1931;
Wallach & O’Connell 1953; Johannson 1964). Both of these methods may be considered as
correspondence techniques, since they rely on establishing a correspondence between identical
items in different images and on using the difference in projection of these items to determine
surface shape. That is, correspondence methods compute surface information by:

(i) identifying a location in the physical scene in one image;

(ii) identifying the corresponding location in a second image, taken from a viewpoint
different either in space (stereo) or in time (structure-from-motion); and

(iii) computing a three-dimensional surface value, representing the distance of the point
relative to some base point, based on the difference in the positions of the two corresponding
points in the images.

Many of the current computational theories of these processes (Marr & Poggio 1979; Grimson
19814; Mayhew & Frisby 1981; Ullman 19794; Longuet-Higgins & Prazdny 1980) argue that
the correspondence process cannot take place at all points in an image. Rather, the first stage of
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VISUAL SURFACE INTERPOLATION 397

the correspondence process is to derive a symbolic description of points in the image at which the
irradiance undergoes a significant change (Marr & Hildreth 1980). This symbolic representation
(called the primal sketch (Marr 1976; Marr & Hildreth 1980)) forms the input to the second stage
of the process in which the actual correspondence is computed. As a consequence of the form of
the input, the correspondence process can compute explicit surface information only at scattered
points in the image. Yet our perception is clearly of complete surfaces. (For example, in figure 1,
a sparse random dot stereogram yields the vivid perception of a square floating in space above
a background plane, rather than a collection of dots suspended in space.) The problem to be
addressed in this paper is that of computing complete surface representations by interpolating
an initial representation consisting of sparse surface values.

F1GUrE 1. A sparse random dot pattern. Although the density of dots is very small, the perception obtained upon
fusing this pattern is one of two disjoint planes, rather than dots isolated in depth.

We shall examine this surface interpolation problem at two levels. The first level is to consider
the strictly mathematical question of surface reconstruction, independent of its relevance to the
human visual system. Suppose that we are given a visual process that determines surface
information at points corresponding to relevant changes in the images. In general, there will be
many possible surfaces consistent with these initial surface points. For example, consider the
boundary conditions provided by a circular arc, along which the depth is constant. The possible
surfaces consistent with these known points include a flat disc, a sphere and even the highly
convoluted surfaced formed by a radial sine function (see figure 3). How do we distinguish the
correct one? Mathematically, we need to be able to compare two possible surfaces, to determine
which is ‘better’. This can be done by defining a functional @ from the space of possible surfaces
to the real numbers, so that comparing surfaces can be accomplished by comparing corres-
ponding real numbers. Provided that @(f) < ©@(g) whenever surface fis ‘better’ than surface g,
the “best’ surface to fit through the known points is that which minimizes @. There are two
problems to solve here: (i) What does it mean for fto be ‘better’ than g? and (ii) Under what
conditions does a unique ‘best’ surface exist?

Once these questions have been answered and an appropriate functional has been derived, we
can turn to the second lével, which is to consider a specific algorithm for finding the surface that
optimizes the functional. Because our intent is to consider models for the interpolation process as
it occurs in the human visual system, we will restrict our attention to biologically feasible
algorithms (Ullman 19794; Grimson 1981 5). In Grimson (19815, d, 1982), such algorithms are
derived and their performance on a range of images is illustrated.

31-2
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The motivation for considering the interpolation problem first mathematically, indepen-
dently of the specifics of the human system, and then algorithmically, incorporating specific
biological contraints, is based on the assumption that one can consider the visual system as a
symbol manipulation process (Marr 1976, 1982; Marr & Poggio 1977). This implies that the
meaning of the symbols being manipulated can be distinguished from the physical embodiment
of those symbols. Hence, one can deal with the mathematical consideration of the information
processing that is occurring, independently of the implementation of that processing (whether in
transistors or neurons). The rationale for this view lies in the belief that any computational theory
should address the fundamental questions of the information processing necessary to perform
the task, and that such computational theories are independent, to a large extent, of the method
used to compute them. The initial goal is thus to determine computational constraints on the
interpolation problem, based on the input and output representations of the process, and based
on the structure of the computation required to transform one representation into the other. Note
that a computational theory of the information processing is applicable both to the human visual
system and to applications areas (such as high-altitude photomapping, hand-eye coordination
systems, industrial robotics and inspection of manufactured parts) where it is useful to create
a complete specification of surface shape.

While we shall initially concentrate on the mathematical aspects of visual surface interpolation,
the problem is not completely isolated from the human visual system. If we view the human early
visual system as a symbolic manipulator, we can consider visual processing as a series of trans-
formations from one representation to another (Marr 1976, 1982). In particular, three stages can
be identified (see figure 2). From the images, we transform to a description, called the primal
sketch, of those locations at which the image irradiances change. Next, primal sketch descriptions
of several images are matched, by either the stereo or motion computation, to obtain a description
of surface information at the zero-crossings. This representation is called the raw 2}-D sketch.
Finally, the raw 21-D sketch is interpolated to obtain complete surface descriptions, called the
full 23-D sketch (Marr 1978; Marr & Nishihara 1978). The first two stages have been considered
elsewhere (Marr 1976; Marr & Hildreth 1980; Hildreth 1980; Marr & Poggio 1979; Grimson
1980, 19814, b; Ullman 1979a). It is the final stage, the problem of surface interpolation, that is
considered here.

We note that the form of the input and output representations can influence the design of the
transformation. Here we shall assume that the input representation consists of explicit surface
information, such as distance or relative distance, along the zero-crossings of the convolved
image (these terms will be given technical definitions in §2). The output representation will be
a complete specification of surface information, where by complete we mean that an explicit
distance value should be computed at every point on some grid representation of the scene. Our
main concern in this paper is with the computational constraints needed to transform the input
representation into the output representation.

Although surface values at all points of the image are important, there is another aspect of
surface information that should also be made explicit in the output representation. This is the
set of discontinuities in surfaces, the occluding contours, both subjective and objective. Marr
(1978) argues that the 21-D sketch should be a viewer-centred representation that includes both
explicit surface information, such as depth and surface orientation, and explicit contours of
surface discontinuities. In this paper, the concentration is on the problem of creating explicit
surface information at all points of the surface. In Grimson (19814, d, 1982), the question of
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surface discontinuities is outlined, and possible algorithms are suggested, but an implementation
of this stage has not been completed.

Throughout this paper, we shall assume that the surfaces are twice continuously differentiable.
While the above remarks indicate that this is not completely valid, it does provide a reasonably
good starting point for a computational theory of surface interpolation, since the contours of
surface discontinuities will generally be very sparse. A more complete account of the interpolation
process should, however, account for the process of making surface discontinuities explicit and
for the effect of such discontinuities on our assumption of twice continuously differentiable
surfaces.

2. CONSEQUENCE OF THE CORRESPONDENCE PROBLEM

We indicated above that we should concentrate on correspondence methods that could effect
the three-dimensional surface reconstruction: stereopsis (Marr 1982; Marr & Poggio 1979;
Mayhew & Frisby 1981; Grimson 1980, 19814) and structure-from-motion (Ullman 1979a;
Longuet-Higgins & Prazdny 1980). The three main steps of the correspondence problem are:
(i) identify a location in the physical scene in one image; (ii) identify the corresponding location
in a second image; and (iii) compute a three-dimensional surface value, representing the distance
of the point relative to some base point, based on the difference in the positions of the two corre-
sponding points in the images.

If one can identify a location beyond doubt in the two images, then the correspondence
problem is trivial. It can be demonstrated, however, that both the stereo computation and the
motion computation can take place on very primitive descriptions of the images (Julesz 1960;
Ullman 19794). As a consequence, the difficulty of the problem, for human vision, lies in the
correspondence problem, which item in one image matches which item in the other. The reason
for this is that for any primitive element from one description, there are liable to be many possible
matching elements from the other description. This is especially true if image irradiance values
are used as the basic descriptions. Consider an image of a mat-painted wall with uniform illumi-
nation. Given a small element of that wall from one image, it is virtually impossible to distinguish
which small element from the other view matches it. On the other hand, if there is a scratch or
texture marking on the wall, it is likely that such a location can be distinguished in the two views.
This suggests that the representation upon which the correspondence operation takes place
should reflect those positions in an image at which some physical property of the underlying
surface is changing. This representation is called the primal sketch (Marr 1976; Marr & Hildreth
1980).

Marr & Hildreth (1980; see also Hildreth 1980) have refined the preceding intuitive argument
into more rigorous computational arguments, in conjunction with evidence from neurophysiology
and psychophysics. They argue that the primal sketch representation is computed by determining
those locations in an image at which the corresponding surface location undergoes a change in
one of its physical properties, for example, reflectivity, texture or surface material. Such changes
will generally correspond to a step change in image irradiance, at some scale. There are many
ways of detecting the irradiance changes. Marr & Hildreth argue on computational and psycho-
physical grounds for using the following scheme. (See Richter & Ullman (1980) for neuro-
physiological arguments in support of this scheme.)
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(i) Convolve the image with a set of filters given by the Laplacian applied to a Gaussian,

2_ 942 2
V2G(r,0) = r__(j_(f exp (—57272) ,
where o is a constant determined from psychophysical data.

(ii) Locate all non-trivial zero-crossings in the convolved irradiances (see Marr & Poggio
1977)-

A non-trivial zero-crossing is a point at which the convolved irradiance values change from
positive to negative or vice versa.

These zero-crossings form the basic representation upon which the later visual processing takes
place.

Given this representation of the images, the stereo correspondence problem can now be solved
(Marr & Poggio 1979; Grimson 19814). After some additional processing, the structure-from-
motion computation (Ullman 1979a) can also be performed. As a consequence, explicit three-
dimensional surface information (such as distance, or surface orientation) can be computed only
at points corresponding to zero-crossings in the primal sketch. This would yield a sparse surface
representation. Yet clearly our perception is of complete surfaces (see for example figure 1). In
addition, a ‘nice’ boundary is found for the central square. This implies that once the corre-
spondence problem is solved, either by the stereo computation or by the motion computation, an
interpolation must be performed between the surface values given at the zero-crossings, to obtain
a complete surface description, and contours of surface discontinuities should be explicitly
delineated.

3. THE SURFACE CONSISTENCY CONSTRAINT

We now turn to the problem of determining computational constraints involved in the process
of creating complete surface specifications, by interpolating between known points. As basic
input to the interpolation process, we are given the zero-crossings of a convolved image, with
depth information computed along these zero-crossing contours. Suppose one were to attempt to
construct a complete surface description based only on the surface information known along
the zero-crossings. An infinite number of surfaces would consistently fit the boundary conditions
provided by these surface values. Yet there must be some way of deciding which surface, or at
least which small family of surfaces, could give rise to the zero-crossing descriptions. This means
that there must be some additional information available from the visual process which, when
taken into account, will identify a class of nearly indistinguishable surfaces that represent the
visible surfaces of the scene.

To determine what information is available from the visual process, one must first carefully
consider the process by which the zero-crossing contours are generated. The Marr-Hildreth
theory of edge detection (Marr & Hildreth 1980; Hildreth 1980) relies on the fact that sudden
changes in the reflectance of a surface, for example, caused by surface scratches or texture
markings, will give rise to zero-crossings in the convolved image. Sudden or sharp changes in
orientation or shape of the surface will under most circumstances also give rise to zero-crossings.
This fact can be used to constrain the possible shapes of surfaces that could give rise to particular
surface values along zero-crossing contours.

We illustrate the basic arguments with an example. Suppose that we are given a closed zero-
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crossing contour, within which there are no other zero-crossings. An example would be a circular
contour, along which the depth is constant. There are many surfaces that could fit this set of
boundary conditions (see figure 3). One such surface is a flat disk. However, we could also fit
other smooth surfaces to this set of boundary conditions. For example, the highly convoluted
surface formed by sin (x2+y2%)* would be consistent with the known disparity values. Yet in
principle, such a rapidly varying surface should give rise to other zero-crossings. This follows from
the observation that if the surface orientation undergoes a periodic variation, then it is likely that
the irradiance values will also undergo such a variation. Since the only evident zero-crossings
are at the borders of the object, this implies that the surface sin (12 +y2)# is not a valid repre-
sentative surface for this set of boundary conditions.

Ficure 3. Possible surfaces fitting depth values at zero-crossings. Given boundary conditions of a circular zero-
crossing contour, along which the depth is constant, there are many possible surfaces that could fit the known
depth points. Two examples are a flat disk and the highly convoluted surface formed by sin (x2+32)3,
shown here. (From Grimson (19815).)

Hence, the hypothesis is that the set of zero-crossing contours contains implicit information
about the surface as well as explicit information. If we can determine a set of conditions on the
surface shape that cause inflexions in the irradiance values, then we may be able to determine a
likely surface shape, given a set of boundary conditions along the zero-crossing contours.

3.1. No news is good news

The implicit information about surface shape contained in the image irradiances can be
formalized in the surface consistency constraint, namely:

The absence of zero-crossings constrains the possible surface shapes.

Just as the presence of a zero-crossing tells us that some physical property is changing at a given
location, the absence of a zero-crossing tells us the opposite, that, in general, no physical property
is changing, and in particular that the surface topography is not changing in a radical manner.
We informally refer to this constraint as no news is good news since it says that, in general, the
surface cannot change radically without informing us of this fact by means of zero-crossings.
To make explicit any constraints on the shape of the surface for locations in the image not
associated with a zero-crossing, one must carefully examine the image formation process (Horn
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1970, 1975, 1977). Many factors are involved in the formation of image irradiances. Changes in
any of those factors can cause a change in the image irradiances, and hence a zero-crossing in
the convolved image. For example: a change in surface material can correspond to a change in
albedo, and hence to a zero-crossing in the convolved image; a discontinuity in depth can
correspond to a change in the illumination striking the surface, and hence to a zero-crossing; and
a discontinuity in surface orientation can correspond to a change in the amount of illumination
reflected toward the viewer, and hence to a zero-crossing. We are interested in showing that the
inverse is also true, in particular that, in regions in which the illumination and albedo are roughly
constant, the absence of a zero-crossing implies that the surface shape cannot be changing in a
radical manner.

While it is difficult (because of the many factors involved) to obtain a precise analytic expres-
sion for the probability of a zero-crossing occurring at any point in an image, we can obtain some
reasonable estimates of this probability. In Grimson (1981 ¢) itis shown that under some relatively
minor assumptions concerning the surface material and the strength of the illuminant, an analytic
expression for the probability of a zero-crossing in some region of an image can be derived. In
essence, the expression verifies our earlier intuitive argument, that is, the probability of a zero-
crossing is directly related to the amount of variation in the local surface orientation (or, more
informally, to the fluctuation or ‘wiggle’ in the surface).

If we know that in some region of the image there are no zero-crossings, then the above relation
can be inverted to imply that the surface should contain a minimal amount of variation in surface
orientation (provided that we assume that the surface material and the illuminant are roughly
constant over this region). This provides a constraint on the possible surfaces that could be inter-
polated through a set of known points, and is referred to as the surface consistency constraint.

4., THE COMPUTATIONAL PROBLEM

We are now ready to consider the computational problem associated with the task of construct-
ing complete surface specifications consistent with the information contained in the zero-crossings.
The modules of early visual processing, such as stereo or structure-from-motion, provide explicit
information about the shapes of the surfaces at specific locations in the images, corresponding to
the zero-crossings of the convolved images. The surface consistency constraint indicates implicit
information about the shapes of the surfaces between the zero-crossings, stating that between
known depth values the surface cannot change in a radical manner, since such changes would
usually give rise to additional zero-crossings. These two factors will now be combined, to obtain
a complete surface specification.

4.1. Using the surface consistency constraint

Suppose that we are given a set of known depth points. We want a method for finding a surface
to fit through these points that is ‘most consistent’ with the surface consistency constraint. We
shall find the most consistent surface in two ways. In the surface interpolation problem we construct
a surface that exactly fits the set of known points. The problem can be relaxed somewhat into a
surface approximation problem, by only requiring that the surface should approximately fit the
known data and be smooth in some sense.

Given the initial boundary conditions of the known depth values along the zero-crossing
contours, there is an infinite set of possible surfaces that fit through those points. We need to be

32 Vol. 2¢8. B
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able to compare pairs of members of this set of all possible surfaces fitting through those points, to
determine which surface is more consistent. If we can do this, then the ‘most consistent’ surface
can be found by comparing all possible surfaces. A traditional method for comparing surfaces is
to assign a real number to each surface. Then, to compare the surfaces, we need only compare the
corresponding real numbers. The assignment of real numbers to possible surfaces is accomplished
by defining a functional, mapping the space of possible surfaces into the real numbers, @: X s Z.
This functional should be such that the more consistent the surface the smaller the real number
assigned to it. To satisfy the surface consistency constraint, the functional should measure
variation in surface orientation. In this case, the most consistent surface will be the surface that is
minimal under the functional. (For further details and background information about the use of
functionals, see, for example, Rudin (1973).)

The key mathematical difficulty is to guarantee the existence and uniqueness of a solution. In
other words, we need to guarantee that there is at least one surface that minimizes the surface
consistency constraint, and to guarantee that any other surface passing through the known points,
for which the functional measure of surface consistency has the same value, is indistinguishable
from the first surface. This issue is not just a mathematical nicety, however, but is essential to the
solution of many computational problems. Suppose that we devise an iterative algorithm to solve
some problem. What happens if we cannot guarantee the existence of a solution? The iterative
process could be set off to solve an equation and never converge to an answer, which is clearly
undesirable. Further, suppose that a solution exists but is not guaranteed to be unique. Then an
iterative process might converge to one solution when started from one point, and converge to
another solution when started from a different point. Although small variations in the different
solutions might be acceptable, the solutions should not differ in a manner inconsistent with our
intuition about the problem. Thus, in visual surface interpolation, the real trick is to find a
functional that accurately measures the variation in surface orientation, as well as guarantees the
existence of a unique best surface (or a family of indistinguishable surfaces).

How can we guarantee the existence and uniqueness of a solution? In our particular case of
surface interpolation, we shall be using the calculus of variations to determine a system of
equations that the most consistent surface must satisfy, by applying the calculus to the situation
of fitting a thin plate through a set of known points. While this system of equations characterizes
the minimal surface, it does not guarantee uniqueness. The form of the boundary conditions (the
set of known points) will determine the size of the family of minimal surfaces. Unfortunately,
determining the types of input for which a unique solution exists is generally very hard. Instead,
we shall exploit a general case of the mathematical existence of a solution with the weakest
possible conditions on the functional. That is, we shall determine a weak set of conditions on the
functional that are needed to ensure that a unique most consistent surface, or at least a unique
family of surfaces that are most consistent, will exist. We shall show that, if the functional is an
inner product on a Hilbert space of possible surfaces, then a unique most consistent surface will
exist. (A Hilbert space is an extension of normal Euclidean space, basically an infinite dimen-
sional vector space in which a dot product operation exists and in which functions are usually
used in place of the narmal notion of vector.)

In general, it is extremely difficult to find a functional that measures surface consistency and
satisfies the conditions of an inner product. Hence, we shall show that if the functional is a semi-
inner product on a semi-Hilbert space of possible surfaces, then the most consistent'surface is
unique up to possibly an element of the null space of the functional. (The null space is simply the
set of surfaces that cannot be distinguished by the functional from tlie surface that is zero every-
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where.) In this way, the family of most consistent surfaces can be found. Based on the form of the
null space, we can determine whether or not the differences in minimal surfaces are intuitively
indistinguishable, and what conditions on the known boundary values will guarantee a unique
minimal surface, from this family.

Having derived conditions on the functional, we need to show that there is such a functional.
The surface consistency constraint implies that the functional should measure variation in surface
orientation over an area of the surface. Although the condition of a semi-inner product is a
mathematical requirement needed to guarantee a solution, it does not restrict in an unreasonable
way the kinds of surfaces that we consider, and gives rise to at least two very natural functionals,
both of which can be derived from the calculus of variations: one measures the integral of the
square Laplacian applied to the surface and the other measures the quadratic variation of the
local x and y components of the surface orientation.

Given that there are at least two possible functionals, are there others? It can be shown (Brady
& Horn 1982) that, if we require a functional that is (i) a monotonic function of the variation in
surface orientation, (ii) a semi-inner product, and (iii) rotationally symmetric, then there is a
vector space of possible functionals, spanned by the square Laplacian and the quadratic variation.
In other words, there is a family of possible functionals, given by all linear combinations of these
two basic functionals.

Given that there is more than one possible functional, how do they differ? Using the calculus of
variations, and some results from mathematical physics, we shall show that the surfaces that
minimize these functionals will be roughly identical in the interior of a region and will differ only
along the boundaries of a region. Also, the null spaces of the functionals will differ, implying
different families of most consistent surfaces corresponding to each functional. We know that the
minimal surface is unique up to possibly an element of the null space. Since we require that the
solution surface be either unique, or a member of an indistinguishable family of solutions, the size
of the null space is important in judging the value of a functional. Based on this, we shall argue
that the quadratic variation is to be preferred over the square Laplacian. If we require that the
surface pass through the known points, we can show that the form of the stereo data will force a
unique most consistent surface for quadratic variation, while this is unlikely for functionals such
as the square Laplacian.

In Grimson (1981 5, d, 1982) examples of the types of minimal surfaces obtained under quadratic
variation and the square Laplacian are shown, and it is argued that the mathematical distinction
in size of null space has a practical consequence, as the types of surfaces that minimize the square
Laplacian are inconsistent with our intuitive notion of the best surface to fit to the known points,
while the surfaces that minimize the quadratic variation are much more consistent with our
intuitive notion of the best surface.

4.1.1. Possible functionals

We know from our intuitive arguments concerning the radial sine function of figure 3 that any
appropriate functional should measure the amount of ‘wiggle’ in the surface, that is, the amount
of variation in the local surface orientation. This suggests that the functional should measure
some factor of the second-order derivatives of the surface. In this section a number of possible
functionals are outlined. "

Example 1. One possibility is to measure the curvature of the surface, which implicitly reflects
variation in surface orientation. The curvature of a surface is usually measured in one of two ways.

For any point on the surface, consider the intersection of the surface with a plane containing
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the normal to the surface at that point. This intersection defines a curve, the curvature of which
can be measured as the arc rate of rotation of its tangent. For any point there are infinitely many
normal sections, each defining a curve. As the normal section is rotated through 2= radians, all
possible normal sections will be observed. There are two sections of particular interest, that which
has the maximum curvature and that which has the minimum. It can be shown that the directions
of the normal sections corresponding to these sections are orthogonal. These directions are the
principal directions and the curvatures of the normal sections in these directions are the principal
curvatures, denoted k, and kp. It can be shown that the curvature of any other normal section is
defined by the principal curvatures.

There are two standard methods for describing the curvature of the surface, in terms of the
principal curvatures. One is the first (or mean) curvature of the surface

J = kg + Kp.
The other is the second or Gaussian curvature of the surface
K = Ka Kp.

For a surface defined by the vector [, y, f(x,y)], these curvatures are given by

”ﬂ(ﬁ%ﬁ] a?[m—ff’ﬁ]
and
K = SeaSw =S
(T+f2+ /)2

Thus, there are two possibilities for the functional. One is to measure the first (or mean)
curvature of the surface,

6,(f) = [ f szxdy]%

[ 45D +fi (LD =2 fuford? o .
U 0+ 1/2)° d"dy]

If £, and f,, are assumed to be small, then 6, is closely approximated by the functional

- [fj(sz)zdxdyr.

Example 2. A second possibility for reducing curvature is to reduce the second or Gaussian

O5(f) = [jfl@dxdyr.

Note that by using the above approximation of small £, and f, we obtain the functional

= [[ Ceetin 20 axas]

curvature,

We shall return to this form later.
Example 3. Another possibility is to consider second-order variation (called quadratic variation
here) in each of the surface variables. The quadratic variation in p = f, is given by

[fo2+83 axay
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and the quadratic variation in ¢ = f, is given by

”(q% +¢y) dxdy.

If the surface is twice continuously differentiable, then p, = ¢,, and by combining these two
variations we obtain the quadratic variation

ou(f) = | [ rarm s dxdy]"’.

Duchon (1975, 1976) refers to the surfaces that minimize this expression as thin plate splines since
the expression @, relates to the energy in a thin plate forced to interpolate the data. We shall
return to this point later.

It turns out that for forms such as 0, 0,, it is very difficult to show that under general input
conditions (that is, a random assortment of zero-crossings with associated depth values) there
exists a unique minimal surface. For forms such as @5, 0,, O, however, we can exploit a general
class of functionals for which the uniqueness of a minimal solution is defined.

4.1.2. The problem is well defined

If surfaces are to be compared, by using a functional from the space of surfaces to the real
numbers, with the purpose of finding the surface that best satisfies the surface consistency con-
straint, it is necessary to ensure that such a goal is attainable. What conditions on the form of the
functional, or on the structure of the space of functions, will guarantee the existence of such a
‘best’ surface? One key constraint on the functional is given by the following theorem. The main
point of the theorem is that one method (although not the only one) of ensuring that the problem
is well defined is to require the functional to have the characteristics of a semi-norm.

THEOREM 1. Suppose that there exists a complete semi-norm © on a space of functions H, and that O satisfies
the parallelogram law ( for definition, see proof of theorem). Then, every non-empty closed convex set E = H
contains a unique element v of minimal norm, up to an element of the null space. Thus, the family of minimal

Sunctions is
{v+s]ses},

h
where S={v—w|weEyn AN

and N is the null space of the functional
N = {u| O(u) = 0}.

Proof. (See, for example, Rudin 1973.) Any space with a semi-norm defined on it can be
associated with an equivalent normed space. Let W be a subspace of a vector space H. For every
ve H, let m(v) be the coset of W that contains v,

m(v) = {v+uiueW}

These cosets are elements of a vector space H/W called the quotient space of H modulo W. In this
space, addition is defiried by
m(v) +m(w) = m(v+w)
and scalar multiplication is defined by
am(v) = m(av).
The origin of the space H/W is m(0) = W. Thus, 7 is a linear map of H onto H/W with W as its
null space.
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Now consider the semi-norm © on the vector space H. Let
N = {v: O(v) = 0}.

This can easily be shown to be a subspace of H. Let 7 be the quotient map from H onto H/AN"
and define a mapping O": H/ A4+ R,

b

O'[n(v)] = O(v).

If71(v) = m(w) then @(v—w) = 0. Since |@(v) —O(w)| < O(v—w), then O'[x(v)] = O'[7(w)] and
0’ is well defined on H/.4". It is straightforward to show that @’ is a norm on H N,
Now we can prove the statement of the theorem. The set E, a subset of H, can be transformed
into a set £’ in the quotient space H/.4" while preserving the convexity and closure properties.
The parallelogram law states

[0 (v+w)]*+[O"(v—w)]* = 2[0' (v)]2+2[O' (w)]?
Let

d = inf{O'(v): ve E'}.
Choose a sequence v, € E’ such that ©’(v,) - d. By the convexity of £/, we know that
3(v,+v,)€eE andso [O'(v,+0,)]% > 442

Ifv and w are replaced in the definition of the parallelogram law by v, and v,,, then the right side
tends to 44%. But [0’ (v,, +v,,)]% > 4d%; 50 one must have [0’ (v,, —v,,) ]2+~ 0 to preserve the equality.
Thus, {v,,} is a Cauchy sequence in H/.4". Since the norm is complete, the sequence must converge
to some ve E', with O'(v) = d.

To prove the uniqueness, if »,w e £’ and ' (v) = d,0’(w) = d then the sequence {v,w,v,w, ...}
must converge, as we just saw. In other words, [@'(v —w)]%+— 0. Since O’ is a norm, this implies
that v —w = 0 or v = w and hence the element is unique.

We have proven that, under the norm @’ on the quotient space H/.4", the set E' has a unique
minimal element. Hence, the structure of the quotient space implies that, under the semi-norm
© on the space H, the set £ has a unique minimal element », up to possibly an element of the
null space 4. In other words, the family of minimal elements is

{v+s| seS}
where

S={v—w|weE}n .

This theorem specifies one set of mathematical criteria needed to ensure that there exists a
unique minimal element. Thus, if the surface consistency constraint could be specified by a
functional that satisfied the conditions of a complete semi-norm, obeying the parallelogram law,
it might be possible to show that there is a unique coset of ‘most consistent’ surfaces. We should
really prefer to be guaranteed a unique surface, rather than some set of surfaces. One way to
tighten the result of the theorem is to require that the functional is a norm.

CoROLLARY 1.1. If @-is a complete norm on a space of functions H, which satisfies the parallelogram law,
then every non-empty closed convex set E = H contains a unique element v of minimal norm.

Proof. If the functional is a norm, the null space is the trivial null space, and the result holds
uniquely.
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The theorem can be rephrased in terms of the surface interpolation problem as follows.

COROLLARY 1.2. Let the set of known points be given by

{(xi>_7/i) I2= 1, ceny N}

where the associated depth value is F;. Let F be a vector space of ‘possible’ functions on K% and let
U= {fe‘gb—lf(xi:yi) = Fi 1= 1, ceey N}

so that U s the set of functions that interpolate the known data {F}. Let © be a semi-norm, which measures the
“consistency’ of a function fe X, that is, we shall say that fis “better’ than g if O(f) < O(g). If O isa
complete semi-norm and satisfies the parallelogram law, then there exists a unique (to within possibly a function
of the null space of ©) functions s € U that is least inconsistent and interpolates the data. Hence the interpolation
problem is well defined.

Proof. Clearly U is a convex set since for any f, ge U,
W+ (-2 gl (x90) = A+ 1= F, = F,

for any data point (x;,y;). Furthermore, U is closed, since if f, € U and f, - f then f(x,;,y,) = F;
and fe U. Then the previous corollary states that U has a unique (to within an element of the

null space) element of minimal norm, which is exactly the desired ‘ most consistent’ surface.
This corollary is a translation of theorem 1 into the problem of interest to us, finding the surface

most consistent with the known data from the stereo algorithm. It specifies a set of conditions
under which the interpolation problem is well defined. Here, the notion of well defined refers to
finding a solution to the interpolation problem that is unique, and by unique we mean up to
possibly an element of the null space of the semi-norm. As a consequence, the extent and structure
of the null space of any semi-norm chosen to incorporate the surface consistency constraint will
be important in determining the utility of that semi-norm. There are two reasons for this. One is
that the null space defines how much ‘wiggle’ or fluctuation in the surface is invisible to the
functional. The second is that when combined with suitable conditions on the set of known points,
the structure of the null space can be used to determine how unique a minimal solution is (that
is, whether there is exactly one minimal solution, or a family of solutions, and how much the
members of that family differ).

Thus, theorem 1 and corollary 1.1 specify two different sets of sufficient, but not necessary,
criteria for ensuring differing types of uniqueness. In both cases, the criteria apply directly to
the structure of the functional. Of course, the real trick is to find a functional @ that captures our
intuition of variation in surface orientation and meets the requirements needed to guarantee a
unique solution.

4.1.3. The space of functions

Theorem 1 describes a set of sufficient conditions for obtaining a unique family of minimal
surfaces. The fundamental point is that we require a complete parallelogram semi-norm to
ensure a unique solution. These conditions precisely define a semi-inner product, and hence the
space of functions over which we seek a minimum must be a semi-Hilbert space.
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CoROLLARY 1.3. If F is a semi-Hilbert space of possible surfaces, and © (v) = p(v,v)} is an inner
product semi-norm, where u (v, v)} is the semi-inner product of the space F, then there exists a unique surface
in F (possibly to within an element of the null space of the semi-norm) that minimizes the semi-norm © over
all surfaces.

Proof. By the definition of Hilbert space, the semi-norm is complete. It is easy to show that it
satisfies the parellelogram law from the definition of @ (v) = (v, ). Thus, if the space of functions
is a semi-Hilbert space, then, by theorem 1, the interpolation problem is guaranteed to have a
unique minimal solution, possibly to within an element of the null space.

COROLLARY 1.4. If Z is a Hilbert space of possible surfaces, and © (v) = pu(v,v)} is an inner product
norm, where (v, v)} is the inner product on the space F , then there exists a unique surface in F that minimizes
the norm @ over all surfaces.

4.1.4. Return to the examples

Returning briefly to the set of possible functionals derived in §4.1.1, we see that, while 6,
and O, are not semi-norms, @,, O, and O; do satisfy the conditions of theorem 1. Hence we are
guaranteed a unique solution up to possibly an element of the null space.

For the square Laplacian, @,, the null space is the space of all harmonic functions. In light of
our surface consistency constraint, this may not be the most appropriate functional. For the
quadratic variation, ©;, the null space is the space of all linear functions. Here, the collection of
surfaces that are invisible to the functional seems to make scnse, since we should expect planes to
have no measurable surface variation, and any other surface to contain at least some variation.
Note that the quadratic variation is capable of distinguishing between possible surfaces to a much
finerlevel than the square Laplacian, since only surfaces thatdiffer by a plane will appear identical
to the quadratic variation, while surfaces differing by a harmonic function (which includes many
more functions than the planes) will be indistinguishable to the square Laplacian.

4.2. Where do we stand?

We have seen that for the general surface interpolation problem there are two constraints on
possible functionals. One is that the functional must measure a monotonic function of the variation
in surface orientation. The other is that the functional should satisfy the conditions of a complete
parallelogram semi-norm, or, equivalently, a semi-inner product. If the functional satisfies these
conditions, then we know that there will be a unique family of surfaces that minimize this
functional and hence form a family of best possible surfaces to fit through the known information.
In the examples sketched above we saw that there are at least two possible candidates for this

functional, namely the square Laplacian,
0u) = | [[w2r2asay]'
and the quadratic variation,
ou) = | [[ o+ e

There are several points still to consider. Are there other possible functionals? How do the
minimal solutions to these functionals differ? What criteria can be applied to determine which
functional is best suited to our surface interpolation problem? What is the best functional under
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those criteria? In §§4.3-4.5, we shall consider these questions in detail. The point that we shall
develop is that the appropriate functional to apply is the quadratic variation, and thus the surface
that minimizes this functional is ‘most consistent’ with the imaging information.

4.3. Are there other functionals?

We have determined at least two functionals that meet our conditions. Are there other possible
functionals, and, if so, how do their minimal solutions differ from those of the square Laplacian
and the quadratic variation?

To answer this question, we rely on a result of Brady & Horn (1982), sketched below. Recall
that the basic conditions on the functional were that it measure a monotonic function of the
variation in surface orientation and that it be a semi-inner product. The first requirement
suggests that the functional must involve terms that are functions of the second-order partial
derivatives of the surface, since such terms will be related to the variation in surface orientation.
The second requirement is needed to ensure the uniqueness of the solution. The conditions for
u#(f,g) to be a semi-inner product are:

(1) n(fig) =w(ef);

(i) w(f+gh) = p(fih) +p(gh);
(i) u(af,q) = anu(f,8);

(iv) u(f.f) = 0.

Given a semi-inner product x(f, g), we can define the desired functional by @(f) = u(f,f)*.

The difficult condition to satisfy is (iii), which implies that the semi-inner product should not
contain any constant terms. The conditions taken together imply that we should consider any
quadratic form as a possible semi-inner product:

+ e(fngm/ +fyygxz) + g(.fxygm/ +f7/2/g12/) *

Thus, the corresponding functional will have the quadratic form:

o(f) =fj’“ﬁz +Bfay + oy + 28 aafey + 26fenfyy + 28 enf o

The final condition that we apply to the functional is that it be rotationally symmetric. This
follows from the observation that if the input is rotated the surface that fits the known data should
not change in form, other than also being rotated.

Minimizing the quadratic form of the functional @(f) can be considered as finding the
minimum over the integral of the function (Af)” M Afwhere Af is the vector

rr
xy
vy
a & e
[3 ’ g] |
e & v
If R is a rotation matrix, then the condition of rotational symmetry is given by

(RAf)TM(RAS) = AfT M Af.

and M is the symmetric matrix

33 Vol. 298. B
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Vector algebra implies that we must have
RTMR=M or RT"M= MR

Equating elements shows that the matrix M must have the form

if+e 0O €
ol
€ 0 if+e

There are two important consequences of this fact. The first is that the set of all possible
functionals forms a vector space, since if M, and M, satisfy the conditions then so does oM, +vM,.
The second is that this vector space of operators is spanned by the square Laplacian and the
quadratic variation since

1f+e 0 ¢ 1 0 1 1 00
[ 0o A 0 ]=e[0 0 0]+%/3[0 2 0}.
e 0 if+e 10 1 0 0

The first term of the sum corresponds to the square Laplacian while the second corresponds to the
quadratic variation. Thus, for ¢ = 1 and # = 0, the functional reduces to square Laplacian. For
e = 0 and f = 2, the functional reduces to quadratic variation. Finally, if e = { and f# = —1
we obtain a functional that corresponds to the approximation to the integral of square Gaussian
curvature derived previously.

Thus, we have answered our second question. There are other possible functionals, but they
are all linear combinations of the two basic functionals, the square Laplacian and the quadratic
variation.

4.4. How do the functionals differ?

Given that there are many possible functionals, all linear combinations of the square Laplacian,
0,, and the quadratic variation, @;, we must consider how the solutions to the square Laplacian
and the quadratic variation differ. In other words, is there any noticeable difference in the surfaces
that minimize these two functionals, subject to fitting through the stereo data? To answer this
question, we shall rely on the calculus of variations (see, for example: Courant & Hilbert 1953;
Forsyth 1960). The salient points are outlined below.

4.4.1. Calculus of variations

The calculus of variations is frequently used to solve problems of mathematical physics, and is
applicable to our surface interpolation problem. In particular, we can use the calculus of
variations to formulate differential equations associated with problems of minimum energy.
Suppose that we are given a thin elastic plate whose equilibrium position is a planeand whose
potential energy under deformation is given by an integral of the quadratic form in the principal
curvatures of the plate. We can consider the interpolation problem as one of determining the
surface formed by fitting a thin elastic plate over a region Z (with boundary I") and through the
known points. With use of a small deflexion approximation, the potential energy is given by

f L[<V2f>2— 2(1= 1) (fanSow —ﬁw] dxdy.
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The solution to the interpolation problem is then the surface that has the minimum potential
energy.

The calculus of variations can be used to characterize this problem by providing a set of
differential equations (called the Euler equations) that the solution surface must satisfy. It can be
shown (see Courant & Hilbert 1953, p. 251) that the Euler equations for the interior of any
region # are given by

V%f =fzx:m: + 2fzzyy +j;J1/m/ = d(x’ !/)

where d(x,y) represents the density of the known surface points. Along the boundary contour I"
of the region, the solution surface must satisfy the equations (called the natural boundary conditions)

M(f) = =V + (1= p) (foa?s + 2fay%eys t iy ¥5) = O
P(f) = %V%f'*' (1 —ﬂ)%(fxxxnxs +fa:y(xnys+xsyn) +f;/z/ynys) =0,

where 0/0n is a derivative normal to the boundary contour, 0/0s is a derivative with respect to
arc length along the boundary contour and x,, y, and x,,, y,, are the direction cosines of the tangent
vector and the outward normal respectively. The constant x denotes a constant factor associated
with the elastic material of the plate, called the Poisson ratio.

There are two subcases of particular interest. In the first case, suppose that 4 = 1. The energy

equation reduces to
ﬂ (V2f)2dxdy,
2

which is simply the square Laplacian condition derived previously. The Euler equation is the
biharmonic equation V4f = 0 while the natural boundary conditions are

V=0, OV/on =0,

along the boundary contour I'. In the second case, suppose that the constant factor is given by
# = 0. The energy equation reduces to

[ v 2z ast sy,

which is simply the quadratic variation condition, also derived previously. The Euler equation is
identical to that of the square Laplacian, namely the biharmonic equation V4f = 0. The natural
boundary conditions are different, however. They are given by

- V2f+ (fa:xxg + 2fxyxsys +fyyy§) =0,
0 0
&V%f""é}(fnxnxs +fzy(xnys+xsyn) +fyyynys) = 0.

In the simple case of a square boundary, oriented with respect to the coordinate axes, the
boundary conditions reduce to

fw =0, 2fzmy +fw/z/ =0

along the boundary segments parallel to the x axis and

fzx =0, 2fyyz+fa:a:a: =0

along the boundary segments parallel to the y axis.

33-2
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These boundary conditions can be straightforwardly simplified to

fyy =0, faczy =0
along the boundary sdgments parallel to the x axis and
Joz =0, fyyz =0

along the boundary segments parallel to the y axis.

Thus, for both the square Laplacian and the quadratic variation, the Euler equations are
identical in the interior. The natural boundary conditions, however, are different. This suggests
that the solutions to the functionals will in general be different, especially along the boundaries
of the surfaces, although the difference can, of course, propogate into the interior of the surface.
In Grimson (19815, 1981d, 1982), examples of solving these equations are shown and this
difference is seen to be important.

There is a second manner in which the minimal solutions to the functionals will differ, in part
related to the difference in boundary conditions of the two solutions. The minimal surface
obtained from either functional will be uniquely determined only to within possibly an element
of the null space of the functional. This will be an important factor in determining which
functional is best suited to our problem, since we should like the boundary conditions provided
by the stereo data to completely determine a unique solution. The null spaces of the two func-
tionals differ greatly, since the null space of the quadratic variation is the space of all linear
functions, while the null space of the square Laplacian is the much larger space of all harmonic
functions. We shall consider the effect of this difference later.

4.5. The best functional

Given that the set of possible functionals forms a vector space spanned by the square Laplacian
and the quadratic variation, what criteria can be applied to determine the ‘best’ functional?

We suggested earlier that there are at least two criteria that may be used to determine the
‘best’ functional. One is the size of the null space, since this determines the resolution of the
functional, that is, the level at which the functional cannot distinguish between two different
surfaces. We saw that the quadratic variation was unable to distinguish between two surfaces
only when they differed by a plane, while the square Laplacian could not distinguish between
two surfaces differing by any harmonic function. Thus the size of the null space is important.

Let us denote the null space of the square Laplacian by 4] (the space of all harmonic functions)
and the null space of the quadratic variation by .4, (the space of all linear functions). Note that
A, is a subspace of 4. Now the null space for any linear combination of these two operators
must contain at least the space spanned by the intersection of the two null spaces 4] and .
Hence the null space of any other operator must consist at least of the linear functions. Thus no
possible operator can have a null space smaller than that corresponding to quadratic variation,
and this suggests that the quadratic variation may be the best function to use.

The importance of the null space is that it helps determine the family of surfaces that are
minimal under the functional. The requirement that we impose on the best functional is that the
member of this family corresponding to the minimal surface be uniquely determined, when
combined with the requirement that the surface must pass through the known points provided
by the stereo algorithm. Clearly the smaller size of the null space the fewer the requirements that
we must impose on the output of the stereo algorithm to ensure a unique solution.
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We may view this criterion in the following manner. We start with the space of all possible
functions, namely, the space of all second differentiable functions of two real variables, denoted
C*(Z*). If we restrict our attention to those surfaces that pass through the boundary conditions
imposed by the stereo or structure-from-motion data, we define a convex subset U < C*(R?).
If we define a functional on this space, the set of surfaces that are minimal under the functional
is given by

{v+s]| seS}
where

S={v—uluecUlinH,

for some minimal surface v e U, where 4" is the null space of the functional. We are guaranteed
a unique solution to the interpolation problem if § is empty (or, equivalently, consists only of
the null surface, defined to be zero everywhere). The key question becomes: can we have two
surfaces that fit through the known points, have the same measure of surface consistency (the
same value as measured by the functional) and differ by an element of the null space? If not, the
minimal surface is guaranteed to be unique. Thus, the structure of the boundary conditions
provided by the stereo algorithm (or the structure-from-motion algorithm) may be important in
deciding which functional is more suitable. Clearly, the smaller the subspace of minimal surfaces,
the more likely we are to have a unique minimal surface fitting the known data, as the set § is
more likely to be empty.
Recall that the null space of the square Laplacian

6f) = | [ (72112 aray|

is the set of all harmonic functions. We wish to know what form of the boundary conditions will
uniquely determine the harmonic function. This problem is known as the Dirichlet problem in
classical analysis, and it has long been known that if the boundary conditions consist of a series of
closed, bounded Jordan curves then the harmonic function is uniquely determined. These are,
of course, sufficient, but not necessary conditions. It would appear, however, from these con-
ditions that it is unlikely that the boundary conditions provided by the stereo algorithm will be
sufficient to uniquely determine the component of the null space. This follows from the obser-
vation that the stereo algorithm is capable of providing boundary values at scattered points in
the image, corresponding to the zero-crossings of the convolved image, while the Dirichlet
problem is uniquely determined if the boundary values form a closed, bounded Jordan curve.
Thus, for the square Laplacian, the best that we can do is to determine a family of most consistent
surfaces, which differ by harmonic functions. Referring back to our earlier question, we see that
in this case we could have two (or more) surfaces that fit through the known points, have the
same measure of surface consistency and differ by an element of the null space. The variation in
such a family of surfaces is not consistent with our intuitive notion of indistinguishable surfaces,
thatis, the difference in the shape of two surfaces that have identical minimal values for the square
Laplacian measured over the surface can be noticeably large (see Grimson 1981, d, 1982). As
a consequence, we consider the square Laplacian to be a poor choice for the functional.
On the other hand, the null space of the quadratic variation

out) = | [z 2t avar|
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is the set of all lincar functions. The boundary conditions required in this case to uniquely
determine the component of the null space are much simpler. In particular, if the stereo algorithm
provides at Icast three non-collinear points, the element of the null space is uniquely determined
to be the null surface (the surface that is zero everywhere). It is clear that in almost all imaging
situations the sterco algorithm will be capable of providing the necessary boundary conditions,
and thus the most consistent surface is uniquely determined.

Thus we have seen that the only possible functionals that can be used to measure the surface
consistency constraint form a vector space spanned by the square Laplacian operator and the
quadratic variation operator. The minimal surface for any such operator satisfies the biharmonic
equation in the interior of the region being interpolated, but along the boundaries of the region
it may satisfy other differential equations than the minimal solution of any other operator. In
general, this implies that the solution surfaces corresponding to different operators will generally
differ in shape. To distinguish between possible operators, we examined the form of their null
spaces. We showed that the operator with the smallest null space was the quadratic variation.
Further, the stereo data is in general sufficient to uniquely determine the component of the null
space corresponding to the minimal surface. That is, the surface that minimizes the quadratic
variation, subject to passing through the known points provided by the stereo or structure-from-
motion algorithms, is uniquely determined.

4.6. The computational problem

By combining the results of §§4.4 and 4.5, it is now possible to state the computational theory
of the problem of interpolating visual surface information.

THE INTERPOLATION OF VISUAL INFORMATION. Suppose that we are given a representation con-
sisting of surface information at the zero-crossings of a primal sketch description of a scene. Within the context
of the visual information available, the best approximation to the original surface in the scene is given by the
minimal solution to the quadratic variation in gradient (or surface orientation)

o(f) = | [ +a s dxdy}%.

Such approximations are guaranteed to be uniquely ‘ best’ to within an element of the null space of the functiona

O. For quadratic variation, the null space is the set of all linear functions. Provided that the set of known point.

supplied by the stereo algorithm or by the structure-from-motion algorithm includes at least three non-collinear
points, the component of the surface due to the null space is uniquely determined to be the null surface. Hence,
the surface most consistent with the visual information is uniquely determined.

It is worth noting that, although the above statement is phrased in terms of zero-crossings
obtained from images convolved with V2G filters, the heart of the statement is much broader in
scope. The key point is that, to interpolate any surface representation that contains explicit
information only at sparse points in the representation, we need to find the ‘most conservative’
surface consistent with the input information. This implies that between the known surface
points the surface should vary as little as possible. Thus, whether those known points correspond
to zero-crossings, edges or some other basic descriptor of image changes, the surface interpolation
algorithm should construct the surface that minimizes variation in the surface between the known
points.

It is interesting to compare the criteria for surface interpolation developed here, as well as the
specific theory of surface interpolation stated above, with the work of Barrow & Tenenbaum

(1981).
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5. ExaAMPLES

We have developed a computational model of the process of visual surface interpolation, which
stated that the “best’ surface to fit through a set of known points (provided for example by stereo
or motion correspondence) was that which minimized the functional of quadratic variation. In

FiGure 4. Synthetic example. The top figure shows a synthetic set of boundary conditions, consistent with a
hyperbolic paraboloid. The points are chosen at random with a density of 10 9%,. The middle figure shows the
surface obtained by minimizing the square Laplacian, while the bottom figure shows the surface obtained by
minimizing the quadratic variation. (From Grimson (1981b).)

Grimson (19814, 1982), algorithms for computing this surface, given a set of known points, are
presented, along with a series of examples and a discussion of their performance. Figures 4-6
illustrate the results of applying the algorithm. Figure 4 shows a synthetic example. The top
figure shows the boundary conditions, a set of points lying on a hyperbolic paraboloid, chosen at
random. The middle figure shows the surface obtained by minimizing the integral of square
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Laplacian, while the bottom figure shows the results of minimizing the integral of quadratic
variation. Figure 5 shows a random dot stercogram and the surface obtained by applying the
Grimson (19814) implementation of the Marr & Poggio (1979) stereo algorithm to this stereo
pair and interpolating the result by means of quadratic variation. In figure 6, a natural stereo-
gram is illustrated. The disparity values obtained by applying the Marr—Poggio stereo algorithm
are processed in two ways. In figure 64 the disparity values are interpolated by using quadratic
variation. In figure 6¢, the disparity values are approximated, by applying the quadratic vari-
ation subject to the condition that the surface pass near but not necessarily through the known
disparity values. A more complete discussion of the processes may be found in Grimson (19814, 4,
1982).

FiGURE 5. A random dot wedding cake. The top figure shows a random dot stereogram of a wedding cake. The
bottom figure shows thé surface obtained by processing the stereo pair with the Grimson implementation of
the Marr-Poggio stereo algorithm and interpolating the result by means of the quadratic variation. (From
Grimson (1981 5).)


http://rstb.royalsocietypublishing.org/

Downloaded from rstb.royalsocietypublishing.org

VISUAL SURFACE INTERPOLATION

419

qd.

ALITODOS
VAOY HHL

40

SNOILDVSNVYIL
TVOIHAOSO1IHd

d-

ALITOOS
VAOY HHL

s o]
® .
] o
s =2}
S &
N —_
..m =]
3 >
<

2

S
S

©

)

&

=

e
=

<+
[ap]

40

SNOILDVSNVYL
TVOIHdOSOT1IHd


http://rstb.royalsocietypublishing.org/

Downloaded from rstb.royalsocietypublishing.org

W.E L. GRIMSON

420

qd.

ALIIODO0S
VAOY HHL

40

SNOILDVSNVYL
TVOIHAOSOT1IHd

d-

s of an approximated surface, where the

jar that has been painted with random dot spray paint.

(¢) The same two view:

)-)

effects of incorrect stereo data have been reduced by requiring the surface to pass near but not through the
(19816

(6) Two views of the interpolated bottle.
known points. (From Grimson

Ficure 6. The coffee jar. (a) Stereogram of a coffee

ALITOOS
VAOY HHL

40

SNOILDVSNVYL
TVOIHdOSO1IHd


http://rstb.royalsocietypublishing.org/

B

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

B

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rstb.royalsocietypublishing.org

VISUAL SURFACE INTERPOLATION 421

6. ANALYSIS AND REFINEMENTS
6.1. Discontinuities
One of the implicit assumptions of the interpolation process described in this paper is that the
pieces of surface are in fact picces of a single surface. Of course, this will frequently not be so. In
this section, we consider what modifications are necessary to account for the existence of several
surfaces within a scene. In particular, we address the issue of explicitly computing discontinuities
in the surface representation, and the effects of explicit discontinuities on the form of the recon-

Y dtire

Fiure 7. Discontinuities in the surfaces. (a) A set of known data points. Intuitively, the correct reconstructed
surface would be a pair of planes, with a discontinuity between them, as shown in (b). If the interpolation
algorithm attempts to reconstruct a surface through the boundary points, without a discontinuity, the result
is as shown in (¢). The sharp change in depth results in a rippling of the surface. (From Grimson (1981 5).)

One of the problems associated with the failure to make surface discontinuities explicit is that
information about the shape of one surface affects the shape of an adjacent surface. This is
illustrated in figure 7. A set of known depth points is given in figure 7a. Intuitively, the most
likely surface to fit through these points would be a pair of planes with a discontinuity in depth
between them, shown in figure 75. However, the requirement that a smooth surface fit through
these points results in a warping and rippling of the surface that is undesirable, as shown in
figure 7¢. Thus, the lack of explicit discontinuities can affect the shapes of the interpolated
surfaces in an unacceptable manner.

To make discontinuities explicit, there are several questions to ask about the process. How are
the discontinuities detected? Where are they placed in the representation? When does the
detection of discontinuities take place in the overall interpolation process? In §§ 6.1.1-6.2
sections, we shall discuss two possible methods for detecting the discontinuities, and their role
in the overall interpolation.

34-2
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6.1.1. Occlusions in the stereo algorithm

Consider the geometry indicated in figure 8. There are regions of the left image that will not
have a corresponding region in the right image, and vice versa. Consequently any zero-crossings
in this portion of one image will have no counterpart in the other image and the stereo algorithm
should not assign any match to such zero-crossings. Hence one possible mechanism for detecting
occlusions would be to search for portions of the image that contain unmatched zero-crossings.
Then the interpolation can be restricted to take place only over those sections of the image that
are bounded by zero-crossings with known disparity values.

Ficure 8. Occlusions. The upper surface occludes portions of the lower surface in each eye. These portions are
different for the two eyes. The cross-hatched area of the lower surface indicates the region of the surface
visible to the left eye (1.) but not to the right (r.). (From Grimson (1981 ).)

This method would detect the discontinuities before the interpolation, since it uses stereo
information directly to locate the occlusions. A problem with the method is that it will not detect
all discontinuities, only those in the horizontal direction. Discontinuities that occur in the vertical
direction do not cause occlusions. Hence any method for detecting discontinuities that relies only
on the unmatched zero-crossings will be incomplete.

6.1.2. The primal sketch revisited

An integral part of most computational theories proposed as models of aspects of the human
visual system is the use of computational constraints based on assumptions about the physical
world (Marr 1976, 1982; Marr & Poggio 1979; Marr & Hildreth 1980; Ullman 19794). In some
of the computational theories, the constraints are explicitly checked for validity within the
algorithm (e.g. Ullman’s rigidity constraint in recovering structure-from-motion). In others, the
constraints are simply assumed to be true, and are not explicitly checked (e.g. the Marr & Poggio
uniqueness constraint in stereopsis). Can any aspect of the surface consistency constraint be
explicitly checked and used by the algorithm?

The basic notion of the surface consistency constraint (Grimson 19814, ¢) is that the surface
cannot undergo a radical change in shape without having an accompanying zero-crossing in the
convolved image. Implicit in this constraint is the assumption that the portion of the image being
examined in fact corresponds to a single object. Thus, one could propose that if the shape of the
interpolated surface forces a zero-crossing in a location for which none exists in the primal sketch
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then such a zero-crossing indicates a location at which the assumption of a single cbject is violated.
Such zero-crossings could then be taken as indicative of a surface discontinuity.

Perhaps the simplest method of detecting such discontinuities is again to use ideas inherent
in the primal sketch (Marr & Hildreth 1980; Hildreth 1980). The primal sketch creates descrip-
tions of points in the image associated with inflexions in intensity, for a range of resolutions. Since
the image intensities may be considered as a type of three-dimensional surface, the primal sketch
operators essentially detect discontinuities in the image intensities for a range of resolutions. Thus,
we could apply the same type of analysis to the detection of surface discontinuities, where now the
surface on which the operators apply is the reconstructed depth surface, rather than the intensity
surface.

Itis worth noting that not only should the operators be of the form used in the extraction of the
primal sketch, butit may alsobe useful to use a range of operators, as in the primal sketch. One
reason for using a range of zero-crossing detectors was that surface changes, and hence intensity
changes, could take place over a wide range of scales. This is still true for surface descriptions
such as have been constructed for the coffee jar or the wedding cake. Thus, surface discontinuities
corresponding to occluding edges will frequently tend to correspond to large surface changes,
while internal surface discontinuities, due to a warping of the surface, will tend to correspond to
small surface changes. By using a range of V2G operators, we can extract both occluding contour
discontinuities and ripples or warpings of the surface itself.

Note that this method requires that the surface interpolation has already taken place, before
it can be applied. Since one of the general requirements on an algorithm is that it be rapid, we
must consider the consequence of detecting discontinuities after the interpolation of the surfaces.
There are two main reasons for the explicit detection of discontinuities. One is that such an
explicit representation of this information will allow higher level processes, such as recognition,
or extraction of axes for three-dimensional shape analysis, to operate more easily, since the process
serves to make implicit information explicit. However, a second reason is to create more accurate
surface representations, by removing the type of effect illustrated in figure 7¢. If the process used
to isolate discontinuities takes place after interpolation, and if the interpolation process requires
the discontinuities to improve the interpolated surface approximation, we must propose an
interpolater that passes over the surface information twice; first to produce an initial description,
and secondly to refine the description after the detection of discontinuities. We must then question
whether such a two-pass process will affect our constraint of rapid algorithms. Fortunately, the
answer is no, since the surface approximation obtained without explicitly accounting for the
discontinuities is very close to the limiting surface except in the areas of the discontinuities (that
is, any effects of the discontinuities are quickly damped out as one moves across the surface).
Thus the initial starting position for the second pass of the interpolation algorithm is very close
to the limiting surface, and only a few iterations will be needed to refine the surface approximation.

6.1.3. Forced inflexions

A third possibility for detecting surface discontinuities s to use the surface consistency constraint
explicitly. Recall that this constraint stated that, if the surface albedo is roughly constant, the
illumination is constant, and the surface has continuous first- and second-order partial deriva-
tives, then a large variation in the surface orientation will generally result in a zero-crossing in
the convolved image. Suppose that the stereo data are such that an inflexion is forced in the
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interpolated surface. If we assume that the surface albedo and the illumination are constant, then
the surface consistency constraint implies that the surface cannot have continuous first- and
second-order derivatives. In other words, there must be a crease or a discontinuity in the surface.

6.2. Interpolation over occluded regions

Even though occluded regions of the image can only be viewed from one eye, the human
system still associates a depth value with these regions. This has an interesting implication for
the interpolation algorithm. For most occluded regions, the only depth information available is
at the edges of the occluded region. Psychophysical experiments have shown that the occluded
region is always perceived at the depth of the lower surface. Thus in figure 8 the occluded region
would be perceived at the level of the lower surface. Note that this is consistent with the physics
of the situation, since if the occluded region were perceived at the level of the upper surface then
it should be visible to the right eye, and this is not the case.

This observation suggests that, when an occlusion is detected, it is explicitly located along the
occluding boundary corresponding to the edge of the nearer object. This allows the occluded
region itself to be associated with the lower surface, and the interpolation algorithm will fill in
surface values for the occluded region from this lower surface.

This raises an interesting psychophysical prediction. The psychophysical literature has
examined planar surfaces and their occlusions, as in figure 8. If the interpolation method
developed here is given an explicit discontinuity along one edge of the occluded region, it will
correctly fill in the region as an extension of the lower plane. Of interest is the case in which the
occluded region is not planar. For example, consider a cylindrical object. If the interpolation
algorithm is given this type of input, it will fill in the occluded portions of the surfaces as a smooth
continuation of the curved cylinder. If the interpolation algorithm correctly models interpolation
by the human visual system, then this predicts that the surface perception for human observers
in this situation should also be that of a smooth cylinder. While informal experiments indicate
that this is true, the prediction has not yet been rigorously tested psychophysically.

6.3. Noise removal

Although in general the Marr-Poggio stereo algorithm is very good at matching zero-crossings
correctly (especially for random dot patterns), incorrect disparity values may sometimes be
assigned to regions of the image. These incorrect values can be considered as noise superimposed
on the correct surface. Since the surface interpolator explicitly attempts to fit a surface through
all the disparity points, such noise points can affect the shape of the surface approximation.
Indeed, the effect of these noise points can spread over a noticeable portion of the surface before
the nearby disparity values can damp out its effect. Thus, it would be preferable to remove these
noise points, or at least neutralize their effect on the approximated surface shape. One possibility
is that if a two-pass interpolator is used, as suggested in the previous section, the detection of
surface discontinuities will isolate such noise points from the rest of the surface, and the second
pass of the interpolator will adjust the surface approximation to remove the influence of the noise
points on the first pass approximation. Certainly this will be true for noise points with disparity
values far removed from the correct values. For noise points whose disparity values are only
slightly different from the correct surface disparities, the difference does not really matter.
However, the final result would be that the noise points, while being isolated from the rest of the
correct surface, would still remain in the final surface description. It would be preferable to
completely remove such points.
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Is it possible to identify and remove noise points from the disparity map? If the noise points
are isolated spatially, then it is possible to identify them as undesirable. This follows from the
form of the primal sketch operators. The case to consider is that in which we must distinguish
between a set of noise points in a disparity map and a small object separated in depth from the
rest of the scene. For the small object, the size of the zero-crossing contour is limited by the size
of the available operator, and hence there is a minimum size of zero-crossing contour that the
operator will yield about the object. If the number of zero-crossing points that differ significantly
from their neighbours is less than this minimum, we may conclude that the points are noise, and
thus remove them. This will result in an improved surface approximation.

6.4. Acuity

It can be seen from the example of the interpolated wedding cake in figure 5 (see also Grimson
19814d, 1982) that the interpolated surface contains a bumpy quality that may not be consistent
with the original object. How can this be explained? The effect occurs in part because the
disparity values are specified only to within a pixel. This yields a fairly coarse disparity map
which results in the observed bumps. Hence, one method of removing the bumps would be to
improve the accuracy of the disparities obtained by the algorithm. Note that some improvement
in disparity accuracy is necessary if the algorithm is to be consistent with the human system. If we
roughly equate pixels with receptors, then a pixel corresponds to roughly 27”. The implementa-
tion of the stereo algorithm computed disparity to within a pixel, while humans are capable of
stereo acuity to a resolution of 2-10s (Howard 1919; Woodburne 1934; Berry 1948; Tyler 1977).

To account for finer disparity values, it is necessary to localize the zero-crossing to a better
accuracy than has been done so far. Since the convolution values are only specified at each pixel,
one method for more accurately specifying the zero-crossing positions is to interpolate between
the known convolution values (Crick et al. 1980; Marr et al. 1979; Hildreth 1980). Perhaps the
simplest method is to rely on the observation of Hildreth that for most cases even a simple linear
interpolation will give extremely accurate localization of the zero-crossings (see also MacVicar-
Whelan & Binford 1981). The addition of finer resolution depth information may improve the
performance of the algorithm.

This example also raises a question of scale. Depending on the application of the surface
specification, different amounts of resolution may be required. For example, if the ultimate goal
of the surface specification is to obtain a rough idea of the position and shape of the surfaces in a
scene, the spatial resolution at which surface information must be made explicit may not be
critical. In this case, the known data from the stereo algorithm may be sampled at a coarser
resolution, before the interpolation takes place. This should result in a smoother surface approxi-
mation. Further, although the reconstructed surface is less exact in terms of fine variation of the
surface shape, the overall shape of the bottle in figure 6 is still preserved in this interpolation.

6.5. Psychophysics

I close by listing a series of psychophysical questions of relevance to the interpolation
process.

(i) What is the form of the surface perceived in occluded regions? In particular, the mini-
mization of quadratic variation suggests that, if a portion of a curved object is occluded, then the
surface in the occluded region should also be curved and should minimize the quadratic variation
across that region.

(ii) Figure 7 suggests that, if discontinuities are not explicitly demarked in the interpolation
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process, a warping of the reconstructed surface (similar to Gibb’s phenomena) will result. While,
in principle, such ripples in the surface are undesirable, it is worth asking whether the human
system specifically accounts for discontinuities before interpolation occurs. This may be re-
phrased by asking whether in stereoscopic situations similar to figure 7 we perceive a warping
of the surface in depth similar to Mach bands?

(iii) We have suggested that there are several possible functionals that could be used to
determine the most consistent surface. Based on algorithmic and mathematical arguments, we
choose the quadratic variation. Can we test the shape of the reconstructed surface psycho-
physically? In particular, can we distinguish psychophysically between the minimum surface
under quadratic variation and the minimum surface under some functional, such as the square
Laplacian? Is the reconstructed surface psychophysically consistent with the surface computed
by quadratic variation?

(iv) What is the spatial resolution of the reconstructed surface? That is, what is the spacing
of the grid upon which the values of the reconstructed surface are computed?

The answers to these questions will help verify or correct the theory of visual surface inter-
polation developed in this paper.

This report describes research done at the Artificial Intelligence Laboratory of the Massa-
chusetts Institute of Technology. Support for the laboratory’s artificial intelligence research is
provided in part by the Advanced Research Projects Agency of the Department of Defense under
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ation Grant MCS 77-07569.
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FiGure 2. Example of processing. The top pair of images is a stereo pair of a scene. The middle pair illustrates the
zero-crossings obtained from the images for one size of V2G. The final image illustrates an interpolated surface
description, formed by matching the zero-crossing descriptions, computing the distance to those points based
on the difference in projection, and then interpolating the result.
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FIGURE 6 (continued overleaf
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